

Guiding Questions for Safe Systems

- What is a Safe System?
- Why do we need it?
- How is it different?
- What does Safe Systems look like in the United States?

Why do we need it?

- Humans have a physiological threshold for kinetic energy.
- Kinetic energy can also depend on the angle of collision.

Why do we need it?

• Quantifying the risk to pedestrians and bicyclists.

F		Bicyclists		
Impact Sp (mi/h)	peed Risk of I (perce	Fatality Vehi ent) Spe	cle Travel ed (mi/h)	Multiple for Fatality Risk
24-33	10	10 25	30 40	2 11
33-41	25			
41-48	50)	50	16
48-55 54-63	75 90	Cushing et al., 2016		2016
Sanc	lers et al., 2019			
Vehicle Speed (mph)	Probability of pedestrian fatality (%)	Probability of pedestrian fatality age ≤ 14 (%)	Probability of pedestrian fatality age 15 to 59 (%)	Probability of pedestrian fatality age ≥ 60 (%)
20	5	1	1	3
30	45	5	7	62
40	85	16	22	92
	г	onnelletal 2009	9	

How is it different?

- The traditional approach to transportation safety management is often characterized by linear thinking.
 - E.g. relationship between design speed and posted speed limit
- · Safe System differs by:
 - Anticipating human error
 - Accommodating human injury tolerance

ITE, 2019

How is it different?

- In a Safe System, we may:
 - Anticipate human error by
 - Separating users in space.
 - · Separating users in time.
 - Accommodate human injury tolerance by
 - · Reducing speeds through
 - Physical roadway designs.
 - Traffic calming treatments.
 - Minimizing high-speed flow with traffic control.
 - Enforcing speed limits.
 - · Reducing impact forces through
 - Designing safer intersections.
 - Improving roadside crashworthiness (or mitigating roadside risk).

ITE, 2019

What does Safe Systems look like in the United States?

 All shareholders prioritize modal choice and manage kinetic energy.

13

Key Points

RDAD SAFETY

- Safe Systems is a human-centered traffic safety management paradigm that anticipates human error and accommodates human injury tolerance.
- Many current practices fit into a Safe System paradigm, but many more will require rethinking.
- Speed management involves all road users and is an example of the Safe System principle of "shared responsibility."
- You cannot have a Safe System if you do not provide safe mobility for pedestrians, bicyclists, and motorcyclists.

www.roadsafety.unc.edu | October 29, 2020

